AI浏览器工具

微软AI要参加IMO竞赛!小目标:数学金牌

  • 时间:2025-05-06 13:33:51
  • 来源:AI浏览器工具
  • 作者:啊哈哈哈
  • 您的位置:首页 > AI教程资讯 > 微软AI要参加IMO竞赛!小目标:数学金牌

    今年,可能是最后一届“纯人类”参赛的IMO (国际奥数竞赛)。

    因为在明年,AI可能也会加入这场金牌争夺战中,成为一名“种子选手”。

    这名潜入IMO赛事的AI名为Lean,由微软的研究人员开发。

    目前,他们正计划让Lean参与明年的国际奥数竞赛。

    也就是说,它将与世界各国的奥赛选手一起争夺IMO金牌。

    准备在IMO上一展身手的Lean

    其实,微软研究人员让AI参加IMO的理由,原因是它是个很好的实验工具(工具人)。

    微软研究员Selsam是挑战赛IMO Grand Challenge的创始人之一,他表示,这项比赛的目的是训练一个人工智能系统,以便在世界顶级数学竞赛中赢得金牌。

    因为这里不仅有数学上“最简单”的难题(连高等数学都用不上,但就是做不出来),而且还汇集了来自世界各地的顶尖高手。

    如果AI能像人一样证明这些数学定理,某种程度上也能说明,让它“像人一样思考”不会太过困难。

    基于这个想法,微软的研究人员从2013年开始研发Lean,希望让AI能拥有自主判断、根据假设进行演绎的能力。

    也就是说,它是个旨在缩小交互式定理证明、与自动定理证明之间的差距的开源项目。

    Lean已经推出了3个版本,现在的第四个版本Lean 4还在完善中,现在的逻辑系统基于依赖类型理论,已经强大到足以证明所有的常规数学定理。

    也就是说,想要让它自己证明IMO中提出来的、此前“没见过的”数学问题,依旧非常困难。

    目前,Lean 4还没有彻底做好准备,作者Leonardo de Moura表示,如果让它参加今年的IMO,“可能只能得0分”。

    因为,Lean目前甚至无法理解某些数学问题需要涉及哪些概念,而这些概念本身又是“什么意思”。

    证明的“第一步”,就难住了算法

    对于不少人来说,数学十分抽象、难以学好。

    事实上,AI和你的感觉一样。

    一般的工程应用问题中,AI得心应手,因为在预训练阶段,算法模型已经对一类问题有所了解。

    也就是说,AI现阶段能干的活仍然有限,通常要给定条件和数据,经过持续的“刷题”,才能做“更复杂的计算”。

    这是一个从“1”到“2”、“3”,甚至是无穷的过程。

    但数学问题的证明本质并不一样,证明一个公理,或是一个复杂的等式,需要完全“白手起家”。

    证明的第一步:提出一个合理证明路径。这个从0到1的关键,目前只有人类的大脑能胜任。

    绝大部分AI,很难给出证明思路的第一步。

    拿一个最简单最古老的数学公理来说,公元前300年,欧几里得就证明了质数有无限多个。

    而要证明这一结论,关键是要认识到,总是可以通过乘所有已知的质数并加1来找到一个新的质数。有了这个思路,接下来的证明就很简单了。

    但“想到这个思路”这一行为本身,对于AI来说,难度巨大。

    说回IMO,正式比赛中的3道题目,尽管不涉及微积分等高等数学,但无一不是要求选手利用中学的所有数学知识,进行巧妙的构思给出解题方法。

    比如这道2005年IMO真题:

    当时不同国家的参赛选手至少给出了3种不同的证明,其中被广泛认可讨论的解法,采用柯西不等式简化的思路,篇幅大概需要半页A4纸。

    而另一位来自摩尔多瓦的选手,极富创造性的用两行式子完成了证明:

    上面一行是“因为”,下面一行就是“所以”,其简洁、精准甚至可以说“粗暴有效”震惊全场。

    精巧的思路也获得了当年的IMO特别奖。

    要说明的是,IMO特别奖不看总成绩,只颁给解题方法独到的选手。

    这种石破天惊的“第一步”,对于现在的AI来说,几乎是不可能做到的。

    这也许就是为什么微软的研究人员设定的目标是“冲击金奖”吧。

    巧的玩不转,Lean采取什么方法跟人类大脑竞争呢?

    Lean如何学数学?

    Lean和所有AI算法一样,需要“喂数据”进行训练。

    目前的Lean,不但无法设计出完整的IMO题目证明过程,它甚至无法理解其中一些问题所涉及的概念。

    所以,Lean的首要任务是学习更多的数学知识。

    训练数据来自Mathlib的库。Mathlib是一个数学基础数据库,它几乎包含了大学二年级以下所有数学知识。

    但Mathlib在中学数学上仍有一些差距,团队正在对Mathlib数据库进行补全。

    掌握知识只是第一步,如何灵活运用才是关键。

    团队采取的方法与象棋、围棋AI等相同——遵循决策树,直到算法找到最优解。

    许多IMO题目的关键是寻找某种证明的模式。深入数学证明的底层,是一系列非常具体的、有逻辑的步骤。

    研究人员尝试通过IMO题目证明的全部细节来训练Lean。

    但在这种方法也有局限,每个特定的题目证明对于算法来说太“专”,下一个不同类型题目仍然不会解。

    为了解决这个问题,团队需要数学家写出之前IMO题目的详细形式化证明。然后,团队提炼证明中的采用的不同策略。

    接下来,Lean的任务,就是在这些策略中寻找一个 “胜利 “的组合。

    这项任务实际上比描述起来困难的多,团队这样比喻它:

    团队说,也许到了明年,获得金牌仍然是很困难的,但至少,Lean有机会参赛了。

    对此,有网友感叹AI这些年神速的进展:先是国际象棋、又是围棋……现在,AI又要来攻占国际奥赛金牌了。

    但也有网友持悲观态度,认为AI现阶段只能在某些方面趋近人类的水平。

    “什么是数学思想?”

    这个问题出乎意料的难以解释透彻。数学家在尝试解决新问题时,大脑的活动是难以描述的,更不要说落实在算法上。

    尽管已经有AI团队朝数学思想的深层迈出了一步,但是从他们采取的策略来看,仍然是学习过往思路,选择成功率最高的“排列组合”。

    这样的AI算法,要在创造力和突破性上超越人类,“火候”还差得远。

    而隔壁的GPT,也在数学证明方向上取得了初步成果。

    最近,OpenAI推出了用于数学问题的GPT-f,利用基于Transformer语言模型的生成能力进行自动定理证明。

    由GPT-f发现的23个简短证明已被Metamath主库接收,这也是首次AI的数学证明获得业内认可。

    GPT真的是要砸所有人的饭碗,连数学家都不放过。

    那么,Lean和GPT-f,你更看好哪一个呢?

    项目链接:https://leanprover.github.io/

    在线可玩:https://leanprover.github.io/live/master/

    参考链接:https://leodemoura.github.io/https://www.quantamagazine.org/how-close-are-computers-to-automating-mathematical-reasoning-20200827/https://www.quantamagazine.org/at-the-international-mathematical-olympiad-artificial-intelligence-prepares-to-go-for-the-gold-20200921

    点击排行榜

    近期热点

    本类最新

    本站所有软件文章图片来源于网友上传,如果侵权请联系[AI浏览器工具],我们24小时内撤销

    Copyright©2025 2025 All rights reserved. 版权所有 AI浏览器工具