AI浏览器工具

6000星人气深度学习资源!架构模型技巧全都有,大牛LeCun推荐

  • 时间:2025-06-11 09:24:00
  • 来源:AI浏览器工具
  • 作者:啊哈哈哈
  • 您的位置:首页 > AI教程资讯 > 6000星人气深度学习资源!架构模型技巧全都有,大牛LeCun推荐

    暑假即将到来,不用来充电学习岂不是亏大了。

    有这么一份干货,汇集了机器学习架构和模型的经典知识点,还有各种TensorFlow和PyTorch的Jupyter Notebook笔记资源,地址都在,无需等待即可取用。

    除了取用方便,这份名为Deep Learning Models的资源还尤其全面。

    针对每个细分知识点的介绍还尤其全面的,比如在卷积神经网络部分,作者就由浅及深分别介绍了AlexNet、VGG、ResNet等。

    干货发布后,在GitHub短时间获得了6000+颗星星,迅速聚集起大量人气。

    图灵奖得主、AI大牛Yann LeCun也强烈推荐,夸赞其为一份不错的PyTorch和TensorFlow Jupyter笔记本推荐!

    这份资源的作者来头也不小,他是威斯康星大学麦迪逊分校的助理教授Sebastian Raschka,此前还编写过Python Machine Learning一书。

    话不多说现在进入干货时间,好东西太多篇幅较长,记得先码后看!

    原资源地址:

    https://github.com/rasbt/deeplearning-models

    干货来也

    1、多层感知机

    多层感知机简称MLP,是一个打基础的知识点:

    多层感知机:

    TensorFlow版Jupyter Notebook

    https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mlp/mlp-basic.ipynb

    PyTorch版

    https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mlp/mlp-basic.ipynb

    增加了Dropout部分的多层感知机:

    TensorFlow版Jupyter Notebook

    https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mlp/mlp-dropout.ipynb

    PyTorch版

    https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mlp/mlp-dropout.ipynb

    具备批标准化的多层感知机:

    TensorFlow版Jupyter Notebook

    https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mlp/mlp-batchnorm.ipynb

    PyTorch版

    https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mlp/mlp-batchnorm.ipynb

    从零开始了解多层感知机与反向传播:

    TensorFlow版Jupyter Notebook

    https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mlp/mlp-lowlevel.ipynb

    PyTorch版

    https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mlp/mlp-fromscratch__sigmoid-mse.ipynb

    2、卷积神经网络

    在卷积神经网络这一部分,细碎的知识点很多,包含基础概念、全卷积网络、AlexNet、VGG等多个内容。来看干货:

    卷积神经网络基础入门:

    TensorFlow版Jupyter Notebook

    https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/cnn/cnn-basic.ipynb

    PyTorch版

    https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-basic.ipynb

    卷积神经网络的初始化:

    PyTorch版

    https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-he-init.ipynb

    想用等效卷积层替代全连接的话看看下面这个:

    PyTorch版

    https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/fc-to-conv.ipynb

    全卷积神经网络基础知识在这里:

    PyTorch版

    https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-allconv.ipynb

    Alexnet网络模型在CIFAR-10数据集上的实现:

    PyTorch版

    https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-alexnet-cifar10.ipynb

    关于VGG模型,你可能需要了解VGG-16架构:

    TensorFlow版Jupyter Notebook

    https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/cnn/cnn-vgg16.ipynb

    PyTorch版

    https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-vgg16.ipynb

    在CelebA上训练的VGG-16性别分类器:

    PyTorch版

    https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-vgg16-celeba.ipynb

    VGG19网络架构:

    PyTorch版

    https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-vgg19.ipynb

    关于2015年被提出的经典CNN模型ResNet,最厉害的资源也在这了。

    比如ResNet和残差块:

    PyTorch版

    https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/resnet-ex-1.ipynb

    用MNIST数据集训练的ResNet-18数字分类器:

    PyTorch版

    https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet18-mnist.ipynb

    用人脸属性数据集CelebA训练的ResNet-18性别分类器:

    PyTorch版

    https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet18-celeba-dataparallel.ipynb

    在MNIST上训练的ResNet-34:

    PyTorch版

    https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet34-mnist.ipynb

    在CelebA上训练ResNet-34性别分类器:

    PyTorch版

    https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet34-celeba-dataparallel.ipynb

    在MNIST上训练的ResNet-50数字分类器:

    PyTorch版

    https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet50-mnist.ipynb

    在CelebA上训练ResNet-50性别分类器:

    PyTorch版

    https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet50-celeba-dataparallel.ipynb

    在CelebA上训练ResNet-101性别分类器:

    PyTorch版

    https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet101-celeba.ipynb

    在CelebA上训练ResNet-152性别分类器:

    PyTorch版

    https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet152-celeba.ipynb

    CIFAR-10分类器中的网络:

    PyTorch版

    https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/nin-cifar10.ipynb

    3、指标学习

    具有多层感知机的孪生网络:

    TensorFlow版Jupyter Notebook

    https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/metric/siamese-1.ipynb

    4、自编码器

    在自编码器这一部分,同样有很多细分类别需要学习,注意留出充足时间学习这一内容。

    自编码器的种类很多,比如全连接自编码器:

    TensorFlow版Jupyter Notebook

    https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/autoencoder/ae-basic.ipynb

    PyTorch版

    https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-basic.ipynb

    还有卷积自编码器。比如这个反卷积(转置卷积)卷积自编码器:

    TensorFlow版Jupyter Notebook

    https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/autoencoder/ae-deconv.ipynb

    PyTorch版

    https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-deconv.ipynb

    没有进行池化的反卷积自编码器:

    PyTorch版

    https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-deconv-nopool.ipynb

    有最近邻插值的卷积自编码器:

    TensorFlow版Jupyter Notebook

    https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/autoencoder/ae-conv-nneighbor.ipynb

    PyTorch版

    https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-conv-nneighbor.ipynb

    在CelebA上训练过的有最近邻插值的卷积自编码器:

    PyTorch版

    https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-conv-nneighbor-celeba.ipynb

    在谷歌涂鸦数据集Quickdraw上训练过的有最近邻插值的卷积自编码器:

    PyTorch版

    https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-conv-nneighbor-quickdraw-1.ipynb

    变分自编码器也是自编码器中的重要一类:

    变分自编码器基础介绍:

    PyTorch版

    https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-var.ipynb

    卷积变分自编码器:

    PyTorch版

    https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-conv-var.ipynb

    最后,还有条件变分自编码器也需要关注。比如在重建损失中有标签的:

    PyTorch版

    https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-cvae.ipynb

    没有标签的:

    PyTorch版

    https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-cvae_no-out-concat.ipynb

    有标签的条件变分自编码器:

    PyTorch版

    https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-cnn-cvae.ipynb

    没有标签的条件变分自编码器:

    PyTorch版

    https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-cnn-cvae_no-out-concat.ipynb

    5、生成对抗网络(GAN)

    在MNIST上的全连接GAN:

    TensorFlow版Jupyter Notebook

    https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/gan/gan.ipynb

    PyTorch版

    https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/gan/gan.ipynb

    在MNIST上训练的条件GAN:

    TensorFlow版Jupyter Notebook

    https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/gan/gan-conv.ipynb

    PyTorch版

    https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/gan/gan-conv.ipynb

    用Label Smoothing方法优化过的条件GAN:

    PyTorch版

    https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/gan/gan-conv-smoothing.ipynb

    6、循环神经网络

    针对多对一的情绪分析和分类问题中,包括简单单层RNN:

    PyTorch版

    https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_simple_imdb.ipynb

    压缩序列的简单单层RNN:

    PyTorch版

    https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_simple_packed_imdb.ipynb

    RNN和LSTM技术:

    PyTorch版

    https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_lstm_packed_imdb.ipynb

    基于GloVe预训练词向量的有LSTM核的RNN:

    PyTorch版

    https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_lstm_packed_imdb-glove.ipynb

    GRU核的RNN:

    PyTorch版

    https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_gru_packed_imdb.ipynb

    多层双向RNN:

    PyTorch版

    https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_gru_packed_imdb.ipynb

    一对多/序列到序列的生成新文本的字符RNN:

    PyTorch版

    https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/char_rnn-charlesdickens.ipynb

    7、有序回归

    针对不同场景,有三类有序回归干货:

    PyTorch版

    https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/ordinal/ordinal-cnn-coral-afadlite.ipynb

    https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/ordinal/ordinal-cnn-niu-afadlite.ipynb

    https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/ordinal/ordinal-cnn-niu-afadlite.ipynb

    8、方法和技巧

    关于周期性学习速率,这里也有一份小技巧:

    PyTorch版

    https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/tricks/cyclical-learning-rate.ipynb

    9、PyTorch Workflow和机制

    用自定义数据集加载PyTorch,这里也有一些攻略:

    比如用CelebA中的人脸图像:

    https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/custom-data-loader-celeba.ipynb

    比如用街景数据集:

    https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/custom-data-loader-svhn.ipynb

    比如用Quickdraw:

    https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/custom-data-loader-quickdraw.ipynb

    在训练和预处理环节,标准化图像可参考:

    https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-standardized.ipynb

    图像信息样本:

    https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/torchvision-transform-examples.ipynb

    有文本文档的Char-RNN :

    https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/char_rnn-charlesdickens.ipynb

    在CelebA上训练的VGG-16性别分类器的并行计算等:

    https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-vgg16-celeba-data-parallel.ipynb

    10、TensorFlow Workflow与机制

    这是这份干货中的最后一个大分类,包含自定义数据集、训练和预处理两大部分。

    内容包括:

    将NumPy NPZ用于小批量训练图像数据集

    https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/image-data-chunking-npz.ipynb

    用HDF5文件存储图像数据集,用于小规模训练

    https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/image-data-chunking-hdf5.ipynb

    用输入pipeline从TFRecords文件中读取数据

    https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/tfrecords.ipynb

    TensorFlow数据集API

    https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/dataset-api.ipynb

    如果需要从TensorFlow Checkpoint文件和NumPy NPZ Archive中存储和加载训练模型,可移步:

    https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/saving-and-reloading-models.ipynb

    11、传统机器学习

    最后,如果你是从零开始入门,可以从传统机器学习看起。包括感知机、逻辑回归和Softmax回归等。

    感知机部分TensorFlow版Jupyter Notebook

    https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/basic-ml/perceptron.ipynb

    PyTorch版笔记

    https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/basic-ml/perceptron.ipynb

    逻辑回归部分也是一样:

    逻辑回归部分部分TensorFlow版Jupyter Notebooks

    https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/basic-ml/logistic-regression.ipynb

    PyTorch版笔记

    https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/basic-ml/logistic-regression.ipynb

    Softmax回归,也称为多项逻辑回归:

    Softmax回归部分部分TensorFlow版Jupyter Notebook

    https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/basic-ml/softmax-regression.ipynb

    PyTorch版笔记

    https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/basic-ml/softmax-regression.ipynb

    传送门

    这份干货满满的资源到这里就结束了,再次放上原文传送门:

    https://github.com/rasbt/deeplearning-models

    超强干货,记得收藏~

    — 完 —

    诚挚招聘

    量子位正在招募编辑/记者,工作地点在北京中关村。期待有才气、有热情的同学加入我们!相关细节,请在量子位公众号(QbitAI)对话界面,回复“招聘”两个字。

    量子位 QbitAI · 头条号签约作者

    վ’ᴗ’ ի 追踪AI技术和产品新动态

    点击排行榜

    近期热点

    本类最新

    本站所有软件文章图片来源于网友上传,如果侵权请联系[AI浏览器工具],我们24小时内撤销

    Copyright©2025 2025 All rights reserved. 版权所有 AI浏览器工具