AI浏览器工具

特斯拉大半夜「见鬼」!空无一人的路上,它却看见「幽灵」秒刹车

  • 时间:2025-06-28 14:39:01
  • 来源:AI浏览器工具
  • 作者:啊哈哈哈
  • 您的位置:首页 > AI教程资讯 > 特斯拉大半夜「见鬼」!空无一人的路上,它却看见「幽灵」秒刹车

    讲个「鬼故事」:

    来感受一下这种feel。

    而这辆特斯拉停车的原因,竟然是因为它看到了「幽灵」 。

    坐在自动驾驶车上,大半夜的又遇上这种事情,可以想象驾驶员的心理阴影了。

    ……

    但实际上,其实特斯拉看到的并非是「不干净的东西」,而是被称作「幽灵」(Phantom)的一种攻击自动驾驶辅助系统(ADAS)的图像——掺杂在路边广告牌视频中。

    这种图像出现的时长极短,可以用一瞬间来形容。

    人类驾驶员往往不会注意到,但对于自动驾驶系统,却成为「强有力的停车信号」。

    也千万不要小瞧这种攻击,它给自动驾驶车辆和人类带来的后果,或许要比这个「鬼故事」还要恐怖。

    隐藏在广告牌中的「幽灵攻击」

    在这个案例中,「幽灵攻击」是隐藏在路边广告牌的视频中。

    当时,视频中的内容是这样的。

    看似是美味的汉堡包广告,但播放期间掺杂了一张「幽灵攻击」图像,这就是「鬼故事」的罪魁祸首——0.42秒的停车路标。

    人类驾驶员大概率在行驶过程中,不会过分关注路边广告牌的视频内容;即使看到了这一闪而过的图像,也基本会认为是个bug。

    但自动驾驶系统就不同了,顶着那么多雷达和摄像头,时时刻刻「眼观六路」。

    于是,搭载特斯拉HW3的Model X,便采纳了这一瞬间停车路标的「建议」。

    可能你会说,特斯拉Model X或许是个例。

    别急,「幽灵攻击」还在Mobileye 630 Pro系统做了实验。

    这次隐藏在视频中的内容是这样的。

    此次的「幽灵攻击」是一张仅闪现0.125秒的「90英里/小时」路标。

    于是,搭载Mobileye 630 Pro的车辆,在「看到」这个视频后,速度就真的控制在了90……

    「幽灵攻击」都是这种一闪而过的图像吗?

    不不不。

    在路上投影个图像,也是可以的。

    这一次,「幽灵攻击」不再是转瞬即逝,而是一直好好的「躺」在那里。

    然后搭载HW2.5的特斯拉,就把图像检测成了「人」,车速从18英里/小时,降到了14英里/小时。

    来看下AI眼中的世界:

    安全,一直是自动驾驶领域十分关注的问题,也是必须要保障的一个点。

    但为什么如此简单的图像攻击,就能把这些可以说最先进的自动驾驶系统,秒秒钟给忽悠「瘸」了呢?

    「幽灵攻击」背后原理

    其实,攻击自动驾驶辅助系统的手段再简单不过了,根本不涉及黑进特斯拉或Mobileye的系统。

    算法的错误操作,也绝不是代码执行效果不佳的结果。

    它们不是典型的功能性缺陷(如缓冲区溢出、SQL注入),可以通过添加 “if “语句轻松修补。

    这种现象反映了模型对于目标检测的基本缺陷,即它们没法分辨目标的真假。

    简单的办法攻击是直接使用投影仪,在车辆行进线的道路上投射出一个物体,可影像以是行人、汽车、交通标致等等。

    第二种方法,是在路边的广告牌上显示出某些干扰信息,比如限速、转弯等。

    这些干扰信息的持续时间不用很长,只需要几百毫秒的时间,就足以让号称最先进的特斯拉Autopilot作出错误反应。

    研究人员分别测试了Autopilot系统和Mobileye面对干扰持续时间出错的概率:

    可以看出来,干扰持续时间超过0.4秒,两个系统100%会出现问题。

    Moblieye的反应更是比特斯拉自动驾驶灵敏的多,几乎对任何细微的干扰都会有反应。

    特斯拉反应慢半拍,在这种攻击下却意外起到了「正面作用」。

    如何解决这个问题?

    研究人员提出了GhostBuster,意思是「捉鬼小分队」。

    「分队」表示这套系统不止一个神经网络,团队在整个「捉鬼」行动中设置了5层不同的深度神经网络。

    其中,核心的四个轻量级深度CNN,通过检查物体的反射光、上下文、物体的表面和形状深度来评估物体的真实性和可靠性。

    第五个模型使用前四个模型的结果给出最终判断。

    这套5个不同神经网络构成的系统在测试中取得了不错的成绩,在阈值设置为零的情况下,AUC超过0.99(ROC曲线下面积),TPR为0.994(真阳性比率)。

    使用了GhostBuster的带有七个传感器的自动驾驶系统,攻击成功率从之前的99.7-81.2%降低到0.01%。

    单看实验结果,这套系统效果十分好,但是研究人员也指出了它的不足,因为这套系统只针对纯视觉的自动驾驶方案,而激光雷达的案例未考虑在内。

    而对于特斯拉这种纯视觉方案来说,一旦系统认定“非障碍”,其他摄像头探测结果都会被忽略,形成严重安全隐患。

    特斯拉自动驾驶方案的局限

    其实,对激光雷达有所了解的读者,应该会质疑这项研究的有效性。

    因为,激光雷达是不受视觉图像干扰的。

    团队也承认一般采用混合方案的自动驾驶系统基本能解决这个问题。

    但,路上确实也存在想像特斯拉这样纯视觉方案的车不是?

    这项研究揭示的自动驾驶模型本身的缺陷,大大降低了不法之徒攻击的难度和成本。

    由于不涉及算法底层代码,幽灵攻击甚至不要求任何专业知识,也不要复杂的前期调查准备,花几百美元买个投影仪或者无人机就能实现。

    而且在攻击时,不需要人员靠近现场,完成后也能迅速撤离,难以留下证据。

    低成本的犯罪手段,造成的后果轻则交通拥堵,重则车毁人亡。

    科技媒体Wired已经就这个问题联系了特斯拉和Mobileye,但是双方均未回应。

    研究团队

    这次「幽灵攻击」的实施者,是来自以色列本·古里安大学和美国佐治亚理工学院的研究人员。

    △Ben Nassi

    Ben Nassi是本·古里安大学的一名博士生,之前也曾在谷歌工作过一段时间。感兴趣的研究领域包括网络安全和物联网设备。

    目前他在Cyber@BGU实验室工作,从事无人机、智能灌溉系统和可穿戴技术等课题的研究。

    △Yisroel Mirsky

    Yisroel Mirsky是佐治亚理工学院博士后研究员,同时也是以色列BGU网络安全研究中心的高级网络安全研究员。

    他的主要研究方向包括在线异常检测、对抗性机器学习、区块链等。

    而这并不是他们第一次攻击自动驾驶辅助系统。

    今年早些时候,他们便用投影技术,在夜间的道路和路边的树上,投影出人和路标等图像,成功「忽悠」了搭载HW2.5的特斯拉Model X和搭载Mobileye 630设备的车辆。

    而这一次的实验,是「幽灵攻击」的升级版,不再是长时间的将攻击图案放在可监测的位置,而是只让它们出现一瞬间,也同样达到了攻击的目的。

    当然,他们也不是第一个做类似「幽灵攻击」的实验人员。

    早在2016年,来自浙江大学、南卡罗来纳大学的研究人员,便利用无线电、声波和发光设备来欺骗甚至隐藏物体,让特斯拉的传感器无法发现它们。

    当然,在真实生活中,类似是攻击、欺骗事件也是时有发生。

    例如国外网友在驾驶特斯拉过程中,发现自动驾驶系统,竟然把雨天车辆尾灯在路上的反射光,识别成了路障。

    还有今年6月,特斯拉Model 3在高速公路上,直接撞上了横躺的大货车……

    那么,如果你是智能车的车主,是否遇到过诸如此类的「恐怖事件」?

    欢迎在评论区分享你的故事。

    参考链接:

    论文地址: https://ad447342-c927-414a-bbae-d287bde39ced.filesusr.com/ugd/a53494_04b5dd9e38d540bc863cc8fde2ebf916.pdf

    相关报道:

    https://www.wired.com/story/tesla-model-x-autopilot-phantom-images/

    点击排行榜

    近期热点

    本类最新

    本站所有软件文章图片来源于网友上传,如果侵权请联系[AI浏览器工具],我们24小时内撤销

    Copyright©2025 2025 All rights reserved. 版权所有 AI浏览器工具